Journal of Organometallic Chemistry, 299 (1986) 331-339 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PREPARATION AND CRYSTAL STRUCTURES OF TRIETHYLTELLURONIUM CHLORIDE AND IODIDE

RAJ K. CHADHA and JOHN E. DRAKE

Chemistry Department, University of Windsor, Windsor, Ontario N9B 3P4 (Canada) (Received July 29th, 1985)

Summary

Triethyltelluronium chloride and triethyltelluronium iodide have been synthesized and their structures determined by X-ray crystallography. Crystals of Et₃TeCl are cubic, space group $I\bar{4}3m$, a 12.383(4) Å, V 1899(1) Å³ and Z = 8 and those of Et₃TeI are monoclinic, space group $P2_1/n$, a 7.404(2), b 12.780(3), c 11.163(3) Å, β 90.57(2)°, V 1056.2(5) Å³ and Z = 4. In Et₃TeCl, the tellurium and chlorine atoms form isolated cubane-type tetramers with T_d symmetry where the monomeric units are held together by secondary interactions. The structure of Et₃TeI consists of pairs of triethyltelluronium cations which are combined through pairs of bridging iodide ions. Much longer Te --- I interactions between the dimers result in the occupation of the sixth position of a distorted octahedron around the tellurium atom.

Introduction

Crystal structures of a few triorganotelluronium salts have been determined [1–4]. All of the compounds, with the exception of $Me_3Te^+ BF_4^-$ [4], show cation-anion interactions. We have recently published the structure of a telluronium halide, namely Et₃TeBr [5], in which each tellurium atom is involved in three weak secondary bonds with bromine atoms to form a cubane-type tetramer. We decided to study the X-ray structure of the chloride and iodide to compare the structural features of the three halides.

Experimental

 Et_2Te and EtI were purchased from Strem Chemicals Inc. and the Fisher Scientific Co. respectively and used as supplied. Ag_2O was prepared from $AgNO_3$ and NaOH. IR spectra were recorded in Nujol mulls on a Perkin–Elmer 180 spectrophotometer in polyethylene disks. ¹H NMR spectra were recorded at 60 MHz

using a Varian EM-360 instrument with TMS as internal standard. Carbon and hydrogen microanalyses were performed by Guelph Chemical Laboratories Ltd. Tellurium and halogen were determined using standard gravimetric techniques. The density was measured by the flotation method in CCl_4/CH_3L

Synthesis of compounds

Triethyltelluronium iodide

Triethyltelluronium iodide was prepared by treating Et₂Te with excess of EtI and keeping the solution overnight in a refrigerator. The excess of EtI was then decanted and colorless needles of Et₃TeI were then washed with ether and dried in vacuo. Recrystallization from CH₂Cl₂ gave Et₃TeI, m.p. 93°C, lit. 92°C [6]. Anal. Found: C. 21.00; H, 4.51; Te, 37.90; I, 36.50; C₆H₁₅TeI ealed.; C. 21.08; H, 4.39; Te, 37.35, I, 37.18%. IR (cm⁻¹): 504 (ν (Te–C)), 300m, 280m, 244w, 225w, 180m, 155w. ¹H NMR (CDCl₃): δ 1.58 (t, 3H), 3.00 (q, 2H). *J*(CH–CH₃) 8 Hz.

Triethvltelluronium chloride

Triethyltelluronium iodide (2.5 g) was ground up with Ag₂O (2.0 g) and a few drops of water in a mortar for 10–15 min. The slurry was stirred with water (15 ml) for half an hour and filtered. Treatment of the filtrate with 4*N* hydrochloric acid (5 ml) gave Et₃TeCl in aqueous medium, which was extracted twice with CH₂Cl₂ (10 ml). Slow evaporation of the organic layer after drying over anhydrous CaCl₂ gave crystals of Et₃TeCl, (1.4 g, 75% yield), m.p. 184°C. Anal. Found: C. 28.91; H, 6.40; Te, 50.15; Cl, 14.45. C₆H₁₅TeCl caled.: C. 28.79; H, 6.00; Te, 51.02; Cl, 14.19%. IR (cm⁻¹): 502 (ν (Te-C)), 300w, 290w, 175w. ¹H NMR (CDCl₃): δ 1.62 (t. 3H), 3.15 (q, 2H), *J*(CH₂-CH₃) 8 Hz.

Crystallographic analysis

X-ray diffraction results for both the compounds were collected on a Syntex P2₊ diffractometer by procedures already described [7]. A summary of the crystal data is given in Table 1. The intensities of three standard reflections monitored at intervals of 50 reflections fluctuated by less than 2% during data collection. Cell parameters of both the compounds were refined from 15 high angle ($15 \le \theta \le 30^\circ$) strong reflections. Each set of data was corrected for Lorentz and polarization effects and analytical absorption corrections were applied.

For Et₃TeCl, the space group I43m was established from axial photographs showing m3m Laue symmetry, the systematic absences (hkl, h + k + l = 2n + 1) and Patterson vectors, which required the tellurium and chlorine atoms to be on 3m site symmetry. The compound is thus isomorphous with Et₃TeBr [5]. This suggested that the atomic coordinates of tellurium and chlorine should be approximately the same as those of the analogous atoms in Et₃TeBr. The two carbon atoms were found to be disordered across the mirror plane with a small separation ($C(1) \cdots C(1)$ 0.86 and $C(2) \cdots C(2)$ 1.05 Å). Therefore, the carbon atoms were refined isotropically while tellurium and chlorine atoms were refined anisotropically. The convergence was achieved at R = 0.0447 and $R_u = 0.0499$.

For the compound Et₃TeI, the space group $P2_1/n$ was identified from systematic absences 0k0, k = 2n + 1, h0l, h + l = 2n + 1. The positions of tellurium and iodine

TABLE 1

	A	В
Cell constants	a 12.383(4) Å ^b	a 7.404(2), b 12,780(3)
		$c 11.163(3)$ Å, $\beta 90.57(2)^{\circ}$
Cell volume ($Å^3$)	1899(1)	1056.2(5)
Crystal system	cubic	monoclinic
Space group	I43m	$P2_1/n$
Mol. wt.	250.1	341.6
Ζ	8	4
Crystal dimensions (mm)	$0.23 \times 0.25 \times 0.27$	$0.15 \times 0.19 \times 0.31$
$\rho_{\rm c}, \rho_0 ~({\rm g~cm^{-3}})$	1.75, 1.73	2.15, 2.18
Abs coeff, μ (cm ⁻¹)	31.04	52.95
Min abs. corr	1.725	2.328
Max abs. corr	1.982	3.085
Radiation	$Mo-K_{\alpha}, \lambda 0.71$	069 Å
Monochromator	highly oriented	
Temp. (°C)	21	
2θ angle (°)	4-50	4-45
Scan type	coupled θ (cry	stal)/2 θ (counter)
Scan width	$K_{\alpha_1} - 1^\circ$ to K_{α_2}	
Scan speed (° min^{-1})	variable, 2.02–	
Bkgd time/scan time	0.5	
Total reflens. measd.	726(+h, +k, +l)	$1785(+h, +k, \pm l)$
Unique data used	$157 [I > 3\sigma(I)]$	976 $[I > 3\sigma(I)]$
No. of parameters (NP)	15	68
$R = (\Sigma F_0 - F_c / \Sigma F_0)$	0.0447	0.0384
$R_{w} = [\Sigma w(F_{0} - F_{c})^{2} / \Sigma w F_{0} ^{2}]$	0.0499	0.0503
$\Delta \rho_{\rm max} \ ({\rm e} {\rm \AA}^{-3})$	0.7	0.7
Shift: error (max)	0.02	0.2

SUMMARY OF CRYSTAL DATA ^a , INTENSITY	COLLECTION,	AND STRU	CTURAL REFINE-
MENT FOR Et ₃ TeCl (A) AND Et ₃ Tel (B)			

^a Standard deviations in parentheses. ^b Et₃TeBr, a 12.595(4) Å.

atoms were obtained from direct methods using Shelx. The positions of carbon atoms were determined from a difference map. Anisotropic refinement of all atoms gave a chemically unreasonable Te-C(5)-C(6) bond angle as well as Te-C(5) and C(5)-C(6) distances so that it appeared that there was disorder. However, when the Te-C(5) and C(5)-C(6) distances were constrained at 2.14 and 1.44 Å respectively, the refinement resulted in reasonable bond lengths and angles with two C(6) positions having 75 and 25% occupancy. In the final cycles of refinement, these atoms were refined isotropically while all others were refined anisotropically. The refinement converged to R = 0.0384 and $R_w = 0.0503$.

No attempt was made to include hydrogen atoms in either of the two structures. In both cases the function minimized in the least-squares refinement was $(|F_0| - |F_c|)^2$. Unit weights were used in the initial stages, while in the final cycles, a weighting scheme of the form $\omega = 1/[\sigma^2(F) + 0.0001F^2]$ was employed. Computer programs and the sources of scattering factors were those reported previously [8]. Positional and thermal parameters are given in Table 2 and interatomic distances and angles in Table 3. Structure factor tables may be obtained from the authors.

TABLE 2

FINAL POSITIONAL AND THERMAL PARAMETERS (A⁷) FOR NON-HYDROGEN ATOMS WITH THEIR STANDARD DEVIATIONS IN PARENTHESES "

	X		•		61	56.4	,	512	222
A. Et JeCI		- We want to be a start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of the start of t	NAME OF A VALUE AND A VALUE A	and which is a set of the second se	An and non-sector descent and a sector descent and a sector of the secto	The state of the s		na – stolensko med name manafer for slovenski for a v fore for an end of the stolenski for the stolenski for th	and a second
,a	0.1296(1)	0.1296(1)	0.1296(1)	0.0754(8)	0.0754(8)	0.0754(8)	0.0026(6)	0.0026(6)	- 0.0026(6)
-	0.3523(4)	0.3523(4)	0.3523(4)	0.092(3)	(1.092(3))	0.092(3)	0.011(2)	-0.011(2)	-0.011(2)
, (D)	0.113(3)	0.299(3)	0.162(2)	0.111(12)					
C(2) ⁴	0.136(4)	0.370(4)	0.076(5)	0.174(23)					
B. Et Tel									
	0.1302(1)	0.1345(1)	0.1975(1)	0.0880(8)	0.0878(7)	0.0900(8)	0.0038(5)	0.0113(6)	0.0032(5)
Te	0.0378(1)	0.1437(1)	0.1433(1)	0.0684(7)	0.0769(7)	0.0764(7)	-0.0030(4)	0.0113(5)	0.0132(4)
(1)	0.270(2)	0.042(1)	0.129(1)	0.077(10)	0.108(10)	0.094(10)	-0.011(8)	-0.001(8)	0.000(8)
(2)	-0.439(3)	0.083(2)	0.158(2)	0.101(14)	0.127(15)	0.257(28)	-0.035(12)	0.039(16)	-0.034(15)
(3)	-0.168(3)	0.289(1)	0.115(2)	0.147(15)	0.076(9)	0.172(16)	0.025(10)	0.074(12)	0.025(10)
(4)	- 0.061(3)	0.369(1)	0.056(2)	().153(17)	0.092(11)	0.112(13)	-0.007(10)	0.029(12)	0.009(8)
(2)	-0.016(3)	0.140(2)	0.336(1)	0.139(7)					
(6A) ⁶	-0.133(4)	0.210(2)	0.385(3)	().147(9)					
((6B) [°]	-0.044(8)	0.078(4)	().424(4)	(),())(6(14)					

^{*a*} Multiplicity: a = 0.5, b = 0.75, c = 0.25.

A. Et ₃ TeCl			
Te · · · Cl ^a	3.448(4)	$Cl^{a} \cdots Te \cdots Cl^{b}$	97.2(3)
Te-C(1)	2.15(3)	$Te \cdots Cl^{a} \cdots Te^{c}$	82.3(3)
C(1)-C(2)	1.42(6)	Te-C(1)-C(2)	116(2)
Te · · · Te ^c	4.538(4)	$C(1) - Te - C(1)^{d}$	85.8(6)
		C(1)-Te···Cl ^a	80.2(6)
		C(1)-Te · · · Cl ^b	165.3(6)
B. Et ₃ TeI			
Te · · · I	3.813(5)	$Te \cdots I \cdots Te'$	79.5(4)
Te · · · I'	3.861(5)	Te · · · I · · · Te ^h	150.2(4)
Te··· I"	4.494(5)	Te' · · · I · · · Te ^b	118.8(4)
Te-C(1)	2.16(1)	I · · · Te · · · I'	100.5(4)
Te-C(3)	2.11(1)	$I \cdots Te \cdots I''$	108.0(4)
Te-C(5)	2.16(3)	1' · · · Te · · · 1''	121.4(4)
$Te \cdots C(6A)$	2.92(3)	C(1)-Te-C(3)	99.0(6)
$Te \cdot \cdot \cdot Te'$	4.908(5)	C(1) - Te - C(5)	96.6(8)
C(1)-C(2)	1.40(2)	C(3) - Te - C(5)	101.2(7)
C(3)-C(4)	1.46(2)	C(1)-Te···C(6)	91.8(6)
C(5)-C(6A)	1.36(3)	C(3)-Te···C(6)	80.9(7)
C(5)-C(6B)	1.29(3)	Te-C(1)-C(2)	119(1)
		Te-C(3)-C(4)	115(1)
		Te-C(5)-C(6A)	110(2)
		Te-C(5)-C(6B)	140(3)
		C–Te · · · I(mean)	89(2)
		C−Te · · · I'(mean)	168(2)

TABLE 3 INTERATOMIC DISTANCES (Å) AND ANGLES (°) "

"Symmetry equivalent positions: a = -0.5 + x, 0.5 - y, 0.5 - z; b = 0.5 - x, -0.5 + y, 0.5 - z; c = -x, y, -z; d = z, x, y; ' = -x, -y, -z; "0.5 - x, 0.5 + y, 0.5 - z.

Discussion

Et₃TeI was prepared in a manner similar to Et₃TeBr [5]; by the oxidative addition of EtI to Et₂Te. However, Et₃TeCl was prepared from the iodide by hydrolysis with Ag₂O and subsequent neutralization with hydrochloric acid. Both the products are highly soluble in polar solvents and completely insoluble in non-polar solvents.

The structure of triethyltelluronium chloride is similar to that of the bromide [5]. Thus, in Et₃TeCl the tellurium and chlorine atoms are involved in secondary interactions and alternately occupy the corners of a Te₄Cl₄ cubane skeleton (Fig. 1). The resulting Te₄Cl₄ unit is slightly more distorted from a regular cube than the Te₄Br₄ skeleton in Et₃TeBr. This is clear from the difference in X'TeX'' and TeXTe'' (X = Cl or Br) angles which is 14.9 in the former and 12.1° in the latter. However, both the units are more distorted than the Te₄Cl₄ unit of Te₄Cl₁₆ [9] for which the average difference in the angles is only 10.2°. The maximum deviation observed in a cubane-type compound, is 23.8° which is found in $[(Et_3P)CuX]_4$ [10]. The Te ··· Cl distance of 3.448(4) Å in Et₃TeCl is reasonably close to those reported for such

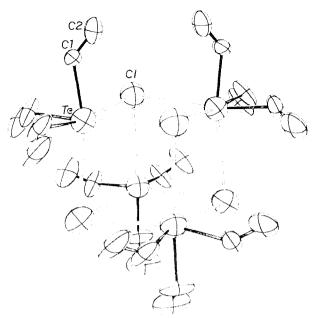


Fig. 1. ORTEP plot of the (Et₃TeCh₄ molecule showing T_d symmetry. Te and Cl atoms are contoured at 50% probability. Carbon atoms are drawn arbitrarily small at the mean position of the disordered atoms. In this figure and Fig. 2 and 3, secondary interactions are shown by open bonds.

contacts in other organotellurium compounds [6.8,11–16]. The Te–C bond length of 2.15(3) Å and the CTeC angle of 85.8(6)° are comparable with the corresponding parameters in trimethyl and triphenyltelluronium salts [1–5]. In summation, the structure of Et₃TeCl is related to that of TeCl₄, which consists of isolated cubane-type tetramers, Te₄Cl₁₆, with Te and Cl atoms occupying alternate corners of the cubane skeleton. Every Te atom has three terminal Cl atoms [9]. The substitution of these Te–Cl(t) bonds by Te–C bonds leads to the structure (Et₃TeCl)₄.

Although the structures of TeCl₄ and Et₃TeCl are clearly related, this is not true for TeL₄ and Et₃TeI. The structure of Et₃TeI is also quite different from the chloride and bromide. The triethyltelluronium cations are associated into weakly bound centrosymmetric dimers which are bridged by iodide ions (Fig. 2). Therefore each tellurium atom is involved in only two secondary interactions and the geometry about each tellurium atom is that of a distorted square pyramid with the C(1) atom at the apical position. The rhombus TeITe'I' is planar and the difference in $Te \cdots I \cdots Te'$ (79.5(4)°) and $I \cdots Te \cdots I'$ (100.5(4)°) angles is 21.0°, which is appreciably greater than the analogous difference in Et₃TeCl and Et₃TeBr. The triethyltelluronium cation has a trigonal conformation of approximately C_1 symmetry: the mean CTeC angle being 97.9(7)°. The Te+++1 distances of 3.813(5) and 3.861(5) A are significantly different from each other but considerably shorter than the sum of Van der Waal's radii which is 4.35 A [17] and are of the order of the Te · · · I secondary contacts observed in $(Me_3Te)^+$ $(MeTel_4)^-$ [3], Me-Tel₄ [18]. $C_{12}H_8OTeI_2$ [19], $C_4H_8OTeI_2$ [20] and $C_{12}H_8TeI_2$ [21]. There are no other Te · · · I interactions less than 4.35 Å although the distance (4.494(5) A) between Te and I'' is only slightly longer. This is long for a secondary interaction but it does complete a

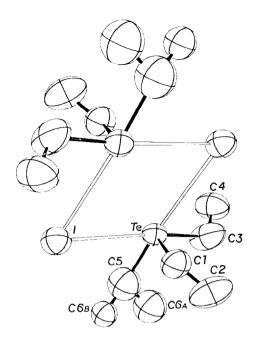


Fig. 2. ORTEP diagram of (Et₃Tel)₂ (50% probability ellipsoids) showing the disordered methyl group.

distorted octahedron about each tellurium atom because it is approximately *trans* to the Te-C(1) bond with the C(1)-Te-I" angle being 160.1(2)°. This apparently gives rise to weakly linked sheets of dimers normal to the *a* axis as shown in Fig. 3. The structure of Et₃TeI can be related to those of Et₃TeCl or Et₃TeBr by visualizing that the cubic unit is cut into two along the *a* axis, so that each tellurium atom now still has three primary bonds to carbon atoms but only two secondary bonds to halogen atoms. This is demonstrated by the unit cell parameters (Table 1) where it can be seen that the *b* and *c* axes of Et₃TeI are similar to the cubic axes of the other two halides but the *a* axis is reduced by nearly one half when the increased size of the iodine atom is taken into account.

The structure of Et_3TeI also differs from those of Me_3SI [22] and Me_3SI [23]. In the latter two cases, the structures are built up from isolated ion pairs with linear S or Se \cdots I linkages. However, the structure of Et_3TeI is similar to that of $Ph_3SeCl \cdot 2H_2O$ [24] in terms of the halogen bridging even though the geometry about the selenium atom appears to be that of a distorted trigonal bipyramid.

The C-C bond lengths in both Et₃TeI and Et₃TeCl lie in the range of 1.40(2)-1.46(2) Å. The Te-C-C angles are in the range of $115(2)-119(2)^{\circ}$ with the exception of those involving C(6) as a result of the disorder problem noted in the Experimental section. These call for no comment, being entirely compatible with accepted values.

Some comparisons among the three halides are listed in Table 4. The fact that the iodide has a much lower melting point than the other two halide derivatives may reflect its dimeric as opposed to tetrameric nature in the solid state. The ¹H NMR chemical shifts do show a slight trend but their similarity probably reflects the similarity of the structures in solution. Purely ionic triethyltelluronium compounds

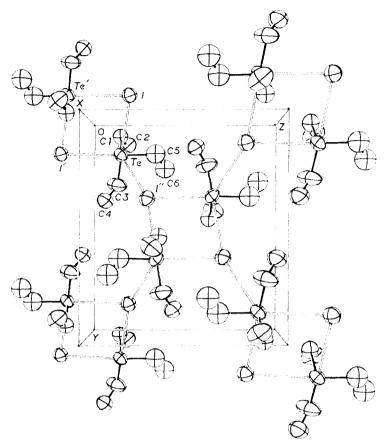


Fig. 3. Crystal packing in Et₃TeI, symmetry related positions are the same as in Table 1.

show signals in the range 2.78-2.86 ppm for the methylene proton [5] compared to 3.00-3.15 ppm in these species. The Te-C bond lengths are very similar in all three compounds but the C-Te-C bond angles open up considerably in the iodide. This

TABLE 4

	M.p.	$\delta(CH_2)$	$\delta(CH_3)$	Te-C	C-Te-C
	(°C)	(ppm)	(ppm)	$(\hat{\mathbf{A}})$	(^)
Et ₃ TeCl	183(d)	3.15	1.62	2.15(3)	85.8(6)
Et ₃ TeBr	155(d)	3.05	1.59	2.14(2)	89.3(6)
Et ₃ Tel	93	3.00	1.58	2.14(2)	97.9(8) "
Te···	Те · · · Те	$Te \cdots X$	···· Te'	$\mathbf{X}\cdots\mathbf{T}\mathbf{e}\cdots\mathbf{X}^r$	Te · · · X
	(Å)	(°)		(°)	(\mathbf{A})
Et TeCl	4.538(4)	82.3(3)		97.2(3)	3.448
Et ₃ TeBr	4.759(1)	83.8(2)		95.9(1)	3.564
Et Tel	4,90(5)	79.5(4)		100.5(4)	3.813

COMPARISON OF SOME PROPERTIES AND PARAMETERS OF TRIETHYLTELLURONIUM HALIDES

^a Averaged values.

may reflect the fact that the chloride and bromide essentially have six atoms crowded around each tellurium atom while the iodide has only five. The angle $Te \cdots X \cdots Te'$ appears to be fairly similar in all three compounds suggesting that this may be the ideal at the halide for the interactions involved in secondary bonding. The $Te \cdots X$ distances are increasing from the chloride through to the iodide by an amount consistent with the large radius of the halogen atom. This inevitably results in the increasing Te --- Te distance.

Acknowledgement

We wish to thank the Natural Sciences and Engineering Council of Canada for financial support.

References

- 1 J.S. Lee, D.D. Titus and R.F. Ziolo, Inorg. Chem., 16 (1977) 2487.
- 2 D.D. Titus, J.S. Lee and R.F. Ziolo, J. Organomet. Chem., 120 (1976) 381.
- 3 F. Einstein, J. Trotter and C. Williston, J. Chem. Soc. (A), (1967) 2018.
- 4 R.F. Ziolo and J.M. Troup, Inorg. Chem., 18 (1979) 2271.
- 5 R.K. Chadha, J.E. Drake, M.A. Khan and G. Singh, J. Organomet. Chem., 260 (1984) 73.
- 6 A. Marquardt and A. Michaelis, Chem. Ber., 21 (1888) 2042.
- 7 R.K. Chadha, J.E. Drake and M.A. Khan, Acta Crystallogr., C39 (1983) 45.
- 8 R.K. Chadha and J.E. Drake, Acta Crystallogr., C40 (1984) 1349.
- 9 B. Buss and B. Krebs, Inorg. Chem., 10 (1971) 2795.
- 10 M.R. Churchill, B.G. DeBoer and S.J. Mendak, Inorg. Chem., 14 (1975) 2041.
- 11 J.D. Korp, I. Bernal, J.C. Turley and G.E. Martin, Inorg. Chem., 19 (1980) 2556.
- 12 G.D. Christofferson, R.A. Sparks and J.D. McCullough, Acta Crystallogr., 11 (1958) 782.
- 13 R.D. Chadha, J.E. Drake and M.A. Khan, Can. J. Chem., 62 (1984) 32.
- 14 R.K. Chadha and J.E. Drake, J. Organomet. Chem., 268 (1984) 141.
- 15 R.K. Chadha and J.E. Drake, J. Organomet. Chem., 293 (1985) 37.
- 16 N.W. Alcock and W.D. Harrison, J. Chem. Soc., Dalton Trans., (1982) 251.
- 17 L. Pauling, The Nature of the Chemical Bond, 3rd Ed., Cornell Univ. Press, NY. 1960.
- 18 H. Pritzkow, Inorg. Chem., 18 (1979) 311.
- 19 J.D. McCullough, Inorg. Chem., 12 (1973) 2669.
- 20 H. Hope, C. Knobler and J.D. McCullough, Inorg. Chem., 12 (1973) 2665.
- 21 J.D. McCullough, Inorg. Chem., 14 (1975) 1142.
- 22 D.E. Zuccaro and J.D. McCullough, Z. Krist., 112 (1959) 401.
- 23 H. Hope, Acta Crystallogr., 20 (1966) 610.
- 24 J.S. Lee and D.D. Titus, J. Cryst. Mol. Str., 6 (1976) 279.